## Atomic

## Structure



## Subatomic particles

| Name | Symbol | Charge | Relative <br> mass |
| :--- | :---: | :---: | :---: |
| Electron | $e^{-}$ | -1 | $\sim 0$ |
| Proton | $p^{+}$ | +1 | 1 |
| Neutron | $n^{\circ}$ | 0 | 1 |

-Electrons and protons have equal but opposite charges
-Electrons are so tiny we say their mass is "negligible" and ignore it when doing calculations. This means that the mass of an atom comes from the protons and neutrons.


## Subatomic Particles

- Quarks
-component of protons \& neutrons
-6 types
-3 quarks = 1 proton or 1 neutron

Counting the Pieces
Atomic Number $=$ number of
protons\# of protons determines
kind of atom
Atomic Number=number of electrons in a
neutral (uncharged) atom


## Mass Number

## - mass Number $=$ protons + neutrons

- always a whole number
- NOT on the Periodic Table!
(Periodic table has average masses, which are usually shown as decimal numbers. When you need to use the mass off the periodic table to find the number of protons or neutrons, you have


What does your periodic table tell you... how do you read it?


## Symbols



Find the

## Isotope Notation



- number of protons $=35$
- number of neutrons $=45$
- number of electrons $=35$
- Atomic number $=35$
- Mass number $=80$




## Symbols

If an element has an atomic number of 23 and a mass number of 52 what is the

$$
\begin{array}{ll}
\text { - number of protons } & =23 \\
\text { - number of neutrons } & =29
\end{array}
$$



$$
\text { -number of electrons }=23
$$ - Complete symbol

*Notice that on the periodic table vanadium has a mass of 51 . This is because of isotopes. (Much more about that later!) Use the mass number they give you in a problem, or if you need to calculate mass number add protons and neutrons together- you can't just look at the average mass on the periodic table and assume it is the mass number.

## Symbols

If an element has 60 protons and 84 neutrons what is the
-Atomic number = 60
-Mass number $=144$
-number of electrons = 60
-Complete symbol


## IONS

IONS are atoms or groups of atoms which have lost or gained electrons to become positively or negatively charged
$=>$ Have unequal numbers of
protons and electrons

## IONS

- Losing an electron from an atom gives a CATION with a positive charge
- Adding an electron to an atom gives an ANION with a negative charge.
- To tell the difference between an atom and an ion, look to see if there is a charge in the superscript!

$$
\begin{array}{ll}
\text { Examples: } & \mathrm{Na}^{+} \\
& \mathrm{Ca}^{+2} \\
& \mathrm{Na} \\
& \mathrm{Ca} \\
& \mathrm{O}^{-2} \text { charged ions } \\
& \mathrm{O} \text { uncharged atoms }
\end{array}
$$

## Forming Carions \& Anions

A CATION forms
when an atom loses one or more electrons. Cation

Mg 12 protons, 12 electrons
$\mathbf{M g}$--> $\mathbf{M g}^{2+}+2 \mathrm{e}-$

An ANION forms when an atom gains one or more electrons Anion


F 9 protons, 9 electrons
F + e- --> F-

| Learning Check - Answers |
| :--- | :--- | :--- |

## PREDICTING ION GHAREES

## In general

- metals lose electrons ---> cations
- nonmetals gain electrons ---> anions


## Learning Check - Answers

圂


## Learning Check

Write the nuclear symbol form for the following atoms or ions:
A. $8 \mathrm{p}^{+}, 8 \mathrm{n}, 8 \mathrm{e}^{-}$
B. $\mathbf{1 7 p} \mathrm{p}^{+}, \mathbf{2 0 n}, 17 \mathrm{e}^{-}$
C. $47 p^{+}, 60 \mathrm{n}, 46 \mathrm{e}^{-}$
$\qquad$
$\qquad$
$\qquad$

## Learning Check－Answers

Write the nuclear symbol form for the following atoms or ions：
A． $8 \mathrm{p}^{+}, 8 \mathrm{n}, 8 \mathrm{e}^{-}$
B． $17 \mathrm{p}^{+}, 20 \mathrm{n}, 19 \mathrm{e}^{-}{ }_{8}^{37} \mathrm{I}_{1} \mathrm{Cl}^{-2}$
C． $47 \mathrm{p}^{+}, 60 \mathrm{n}, 46 \mathrm{e}^{-}{ }_{47}^{107} \mathrm{~A}^{+1}$


## エラッシ゚pシ3

－Atoms of the same element（same \＃ of protons）but different mass number
－Caused by atoms having different numbers of neutrons
－Boron－10 $\left({ }^{10} \mathrm{~B}\right)$ has 5 p and 5 n
－Boron－11（ ${ }^{11} \mathrm{~B}$ ）has 5 p and 6 n


## Example：Two isotopes of sodium．



## Atomic Symbols

－Hyphen notation－Show the name of the element，a hyphen，and the mass number in hyphen notation
－Isotope notation－Show the mass number and atomic number in nuclear symbol form
mass number

atomic number



## Learning Check

An atom has 14 protons and 20 neutrons.
A. Its atomic number is

1) 14
2) 16
3) 34
B. Its mass number is
4) 14
5) 16
6) 34
C. The element is
7) Si
8) Ca
9) Se
D. Another isotope of this element is
10) ${ }^{34} \mathrm{X}$
11) ${ }^{34} \mathrm{X}$
12) ${ }_{14}^{36} \mathrm{X}$


- Because of the existence of isotopes, the mass of a collection of atoms has an average value.

AAM= (mass A) (\%abundance A)

+ (Mass B) $(\%$ abundance $B)$ + ...


## Learning Check- Answers

An atom has 14 protons and 20 neutrons.
A. Its atomic number is

1) 14
B. Its mass number is
2) 34
C. The element is
3) Si
D. Another isotope of this element is
4) ${ }_{14}^{34} \mathrm{X}$
5) ${ }_{14}{ }^{36} \mathrm{X}$


- Boron is $20 \%{ }^{10} \mathrm{~B}$ and $80 \%{ }^{11} \mathrm{~B}$. That is, ${ }^{11} \mathrm{~B}$ is 80 percent abundant on earth.
- For boron atomic weight
$=0.20(10 \mathrm{amu})+0.80(11 \mathrm{amu})=10.8 \mathrm{amu}$
(Check this with what's on the periodic table)


## Learsuisug Cónecis

- ${ }^{6} \mathrm{Li}=7.5 \%$ abundant and ${ }^{7} \mathrm{Li}=92.5 \%$
-Avg. Atomic mass of $\mathrm{Li}=$ $\qquad$
- ${ }^{28} \mathrm{Si}=92.23 \%,{ }^{29} \mathrm{Si}=4.67 \%,{ }^{30} \mathrm{Si}=3.10 \%$
-Avg. Atomic mass of $\mathbf{S i}=$ $\qquad$

Atomic Mass
Calculate the atomic mass of each element described below. Then use the periodic table to identify each element.

| Atomic Mass |
| :--- | :--- | :--- |
| Calculate the atomic mass of each element described <br> below. Then use the periodic table to identify each <br> element. |
| Isotope Mass (amu) Percent <br> Abundance <br> ${ }^{63} \mathrm{X}$ 62.930 69.17 <br> ${ }^{65 \mathrm{X}}$ 64.928 30.83 <br> Isotope Mass (amu) Percent <br> Abundance <br> ${ }^{35} \mathrm{X}$ 34.969 75.77 <br> ${ }^{37} \mathrm{X}$ 36.966 24.23 |

## 

- ${ }^{6} \mathrm{Li}=7.5 \%$ abundant and ${ }^{7} \mathrm{Li}=92.5 \%$
-Avg. Atomic mass of $\mathrm{Li}=6.935$
- ${ }^{28} \mathrm{Si}=92.23 \%,{ }^{29} \mathrm{Si}=4.67 \%,{ }^{30} \mathrm{Si}=3.10 \%$
-Avg. Atomic mass of $\mathrm{Si}=28.1087$

