stoichiometry Calculations

Part One: Mole to Mole Problems

1. How many moles of sodium will react with water to produce 4.0 mol of hydrogen in the following reaction?
$\mathbf{2 N a}(\mathrm{s})+\mathbf{2 \mathrm { H } _ { 2 } \mathrm { O } (\mathrm { l })} \rightarrow \mathbf{2 N a O H}(\mathrm{aq})+\mathbf{H}_{2}(\mathrm{~g})$
2. How many moles of lithium chloride will be formed by the reaction of chlorine with 0.046 mol of lithium bromide in the following reaction?

$$
2 \mathrm{LiBr}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{LiCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})
$$

3. Aluminum will react with sulfuric acid in the following reaction.
$\mathbf{2 A l}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
a. How many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will react with 18 mol Al ?
b. How many moles of each product will be produced?
4. Propane burns in excess oxygen according to the following reaction.
$\mathrm{C}_{3} \mathrm{H}_{8}+\mathbf{5 O}_{2} \rightarrow \mathbf{3 \mathrm { CO } _ { 2 }}+\mathbf{4 \mathrm { H } _ { 2 } \mathrm { O }}$
a. How many moles each of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are formed from 3.85 mol of propane?
b. If 0.647 mol of oxygen is used in the burning of propane, how many moles each of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are produced? How many moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ are consumed?

Part Two: Mole to mass problems

1. Phosphorus burns in air to produce a phosphorus oxide in the following reaction: $\mathbf{4 P}(\mathrm{s})+\mathbf{5 O}_{2}(\mathrm{~g}) \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})$
a. What mass of phosphorus will be needed to produce 3.25 mol of $\mathrm{P}_{4} \mathrm{O}_{10}$?
b. If 0.489 mol of phosphorus burns, what mass of oxygen is used? What mass of $\mathrm{P}_{4} \mathrm{O}_{10}$ is produced?
2. Hydrogen peroxide breaks down, releasing oxygen, in the following reaction:
$\mathbf{2} \mathbf{H}_{2} \mathrm{O}_{\mathbf{2}}(\mathrm{aq}) \rightarrow \mathbf{2} \mathbf{H}_{2} \mathrm{O}(\mathrm{l})+\mathbf{O}_{\mathbf{2}}(\mathrm{g})$
a. What mass of oxygen is produced when 1.840 mol of $\mathrm{H}_{2} \mathrm{O}_{2}$ decomposes?
b. What mass of water is produced when $5.0 \mathrm{~mol}_{2}$ is produced by this reaction?

Part Three: Mass to Mole Problems

1. Sodium carbonate reacts with nitric acid according to the following equation.
$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HNO}_{3} \rightarrow \mathbf{2} \mathrm{NaNO}_{3}+\mathrm{CO}_{2}+\mathbf{H}_{2} \mathrm{O}$
a. How many moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are required to produce 100.0 g of NaNO_{3} ?
b. If 7.50 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ reacts, how many moles of CO_{2} are produced?
2. Hydrogen is generated by passing hot steam over iron, which oxidizes to form $\mathrm{Fe}_{3} \mathrm{O}_{4}$, in the following equation.

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 4 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})
$$

a. If 625 g of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is produced in the reaction, how many moles of hydrogen are produced at the same time?
b. How many moles of iron would be needed to generate 27 g of hydrogen?

Part Four: Mass to Mass Problems

1. Calculate the mass of silver bromide produced from 22.5 g of silver nitrate in the following reaction:
$2 \mathrm{AgNO}_{3}(\mathbf{a q})+\mathbf{M g B r}_{2}(\mathbf{a q}) \rightarrow \mathbf{2} \mathbf{A g B r}(\mathrm{s})+\mathbf{M g}\left(\mathrm{NO}_{3}\right)_{2}(\mathbf{a q})$
2. What mass of acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$, will be produced from the reaction of $90 . \mathrm{g}$ of calcium carbide, CaC_{2}, with water in the following reaction?
$\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$
3. Chlorine gas can be produced in the laboratory by adding concentrated hydrochloric acid to manganese(IV) oxide in the following reaction:
$\mathbf{M n O}_{2}(\mathrm{~s})+\mathbf{4 H C l}(\mathrm{aq}) \rightarrow \mathbf{M n C l}_{2}(\mathrm{aq})+\mathbf{2} \mathbf{H}_{2} \mathrm{O}$
a. Calculate the mass of MnO_{2} needed to produce 25.0 g of Cl_{2}
b. What mass of MnCl_{2} is produced when 0.091 g of Cl_{2} is generated?
