Stoichiometry Calculations

Part One: Mole to Mole Problems

1. How many moles of sodium will react with water to produce 4.0 mol of hydrogen in the following reaction?

 $2Na(s) + 2H_2O(l) \rightarrow 2NaOH(aq) + H_2(g)$

2. How many moles of lithium chloride will be formed by the reaction of chlorine with 0.046 mol of lithium bromide in the following reaction? 21 $i \mathbf{Pr}(\mathbf{a} \mathbf{r}) + \mathbf{Ch}(\mathbf{a}) \rightarrow 21 i \mathbf{Ch}(\mathbf{a} \mathbf{r}) + \mathbf{Prr}(\mathbf{l})$

 $2\text{LiBr}(aq) + \text{Cl}_2(g) \rightarrow 2\text{LiCl}(aq) + \text{Br}_2(l)$

- 3. Aluminum will react with sulfuric acid in the following reaction. $2Al(s) + 3H_2SO_4(l) \rightarrow Al_2(SO_4)_3(aq) + 3H_2(g)$
 - a. How many moles of H_2SO_4 will react with 18 mol Al?
 - b. How many moles of *each* product will be produced?

4. Propane burns in excess oxygen according to the following reaction.

$C_{3}H_{8} + 5O_{2} \rightarrow 3CO_{2} + 4H_{2}O$

a. How many moles *each* of CO₂ and H₂O are formed from 3.85 mol of propane?

b. If 0.647 mol of oxygen is used in the burning of propane, how many moles *each* of CO₂ and H₂O are produced? How many moles of C₃H₈ are consumed?

Part Two: Mole to mass problems

- 1. Phosphorus burns in air to produce a phosphorus oxide in the following reaction: $4P(s) + 5O_2(g) \rightarrow P_4O_{10}(s)$
 - a. What mass of phosphorus will be needed to produce $3.25 \text{ mol of } P_4O_{10}$?
 - b. If 0.489 mol of phosphorus burns, what mass of oxygen is used? What mass of P_4O_{10} is produced?

- 2. Hydrogen peroxide breaks down, releasing oxygen, in the following reaction: $2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$
 - a. What mass of oxygen is produced when 1.840 mol of H₂O₂ decomposes?
 - b. What mass of water is produced when 5.0 mol O₂ is produced by this reaction?

Part Three: Mass to Mole Problems

1. Sodium carbonate reacts with nitric acid according to the following equation.

$Na_2CO_3(s) + 2HNO_3 \rightarrow 2NaNO_3 + CO_2 + H_2O$

a. How many moles of Na₂CO₃ are required to produce 100.0 g of NaNO₃?

b. If 7.50 g of Na₂CO₃ reacts, how many moles of CO₂ are produced?

2. Hydrogen is generated by passing hot steam over iron, which oxidizes to form Fe₃O₄, in the following equation.

 $3Fe(s) + 4H_2O(g) \rightarrow 4H_2(g) + Fe_3O_4(s)$

- a. If 625 g of Fe_3O_4 is produced in the reaction, how many moles of hydrogen are produced at the same time?
- b. How many moles of iron would be needed to generate 27 g of hydrogen?

Part Four: Mass to Mass Problems

1. Calculate the mass of silver bromide produced from 22.5 g of silver nitrate in the following reaction:

 $2AgNO_3(aq) + MgBr_2(aq) \rightarrow 2AgBr(s) + Mg(NO_3)_2(aq)$

2. What mass of acetylene, C_2H_2 , will be produced from the reaction of 90. g of calcium carbide, CaC_2 , with water in the following reaction?

 $CaC_2(s) + 2H_2O(l) \rightarrow C_2H_2(g) + Ca(OH)_2(s)$

3. Chlorine gas can be produced in the laboratory by adding concentrated hydrochloric acid to manganese(IV) oxide in the following reaction:

$MnO_2(s) + 4HCl(aq) \rightarrow MnCl_2(aq) + 2H_2O$

- a. Calculate the mass of MnO₂ needed to produce 25.0g of Cl₂
- b. What mass of MnCl₂ is produced when 0.091g of Cl₂ is generated?