Limiting Reagent and Percent Yield Review Worksheet

Limiting Reagent Problems

1. Use the folowing equation for the oxidation of aluminum in the following problems. $4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$
a.) Which reactant is limiting if 0.32 mol Al and $0.26 \mathrm{~mol}_{2}$ are available?
b.) How many moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$ are formed from the reaction of $6.38 \times 10^{-3} \mathrm{~mol}$ of O_{2} and $9.15 \times 10^{-3} \mathrm{~mol}$ of Al ?
c.) If 3.17 g of Al and 2.55 g of O_{2} are available, which reactant is limiting?
2. A reaction such as the one shown here is often used to demonstrate a single replacement reaction.

$$
3 \mathrm{CuSO}_{4}(\mathrm{aq})+2 \mathrm{Fe}(\mathrm{~s}) \longrightarrow 3 \mathrm{Cu}(\mathrm{~s})+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})
$$

a. If you place 0.092 mol of iron filings in a solution containing $0.158 \mathrm{~mol}^{\mathrm{mof}} \mathrm{CuSO}_{4}$, what is the limiting reactant?
b. How many moles of Cu will be formed?
3. Nickel replaces silver from silver nitrate in solution according to the following equation:

$$
2 \mathrm{AgNO}_{3}+\mathrm{Ni} \longrightarrow 2 \mathrm{Ag}+\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}
$$

a.) If you have 22.9 g of Ni and 112 g of AgNO_{3}, which reactant is in excess?
b.) What mass of nickel (II) nitrate would be produced given the quantities above?

Percent Yield Problems

1. Assume the following hypothetical reaction takes place.

$$
2 A+7 B \rightarrow 4 C+3 D
$$

Calculate the percentage yield in each of the cases:
a. The reaction of 0.0251 mol of A produces 0.0349 mol of C
b. The reaction of 1.19 mol of A produces 1.41 mol of D
c. The reaction of 189 mol of B produces 39 mol of D
d. The reaction of 3500 mol of B produces 1700 mol of C
2. Elemental Phosphorous can be produced by heating calcium phosphate from rocks with silica from sand and carbon in the form of coke. The following reaction takes place:

$$
\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{SiO}_{2}+5 \mathrm{C} \rightarrow 3 \mathrm{CaSiO}_{3}+2 \mathrm{P}+5 \mathrm{CO}
$$

a. If 57 mol of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ is used and 101 mol of CaSiO_{3} is obtained what is the percentage yield?
b. Determine the percentage yield obtained if 1280 mol of carbon is consumed and 622 mol of CaSiO_{3} is produced.

