

STUDY GUIDE FOR CONTENT MASTERY

States of Matter

Section 13.1 Gases

In your textbook, read about the kinetic-molecular theory.

Complete each statement.

1.	Th	e kinetic molecular theory describes the behavior of gases in terms of particles in
2.	Th	e kinetic-molecular theory makes the following assumptions.
	a.	In a sample of a gas, the volume of the gas particles themselves is very
		compared to the volume of the sample.
	b.	Because gas particles are far apart, there are no significant attractive or repulsive
		between gas particles.
	c.	Gas particles are in constant and motion.
	d.	The collisions between gas particles are; that is, no
		energy is lost.
3.	Th	e kinetic energy of a particle is represented by the equation
4.	sai	is a measure of the average kinetic energy of the particles in a mple of matter.
In y	our	textbook, read about explaining the behavior of gases.
For	eac	ch statement below, write <i>true</i> or <i>false</i> .
		5. Gases are less dense than solids because there is a lot of space between the particles of a gas.
		6. The random motion of gas particles causes a gas to expand until it fills its container.
		7. The density of a gas decreases as it is compressed.
		8. A gas can flow into a space occupied by another gas.
		9. The diffusion of a gas is caused by the random motion of the particles of the gas.
		10. Lighter gas particles diffuse less rapidly than do heavier gas particles.
		11. During effusion. a gas escapes through a tiny opening into a vacuum.
		12. Graham's law of effusion states that the rate of effusion for a gas is

directly related to the square root of its molar mass.

STUDY GUIDE FOR CONTENT MASTERY

Section 13.1 continued

In your textbook, read about gas pressure.

Circle the letter of the choice that best completes the statement or answers the question.

- 13. Pressure is defined as force per unit
 - a. area.
- **b.** mass.
- c. time.
- d. volume.
- 14. What is an instrument designed to measure atmospheric pressure?
 - a. barometer
- **b.** manometer
- c. sphygmomanometer d. thermometer
- **15.** The height of the liquid in a barometer is affected by all of the following EXCEPT the
 - a. altitude.

c. density of the liquid in the column.

b. atmospheric pressure.

- **d.** diameter of the column tube.
- **16.** The pressure of the gas in a manometer is directly related to which of the following quantities?
 - a. height of the mercury column in the closed-end arm
 - **b.** height of the mercury column in the open-end arm
 - c. a + b
 - **d.** a b
- **17.** One atmosphere is equal to a pressure of
 - **a.** 76 mm Hg.
- **b.** 101.3 kPa.
- c. 147 psi.
- **d.** 706 torr.
- 18. The partial pressure of a gas depends on all of the following EXCEPT the
 - a. concentration of the gas.

c. size of the container.

b. identity of the gas.

- **d.** temperature of the gas.
- 19. The pressure of a sample of air in a manometer is 102.3 kPa. What is the partial pressure of nitrogen (N₂) in the sample if the combined partial pressures of the other gases is 22.4 kPa?
 - **a.** 62.4 kPa
- **b.** 79.9 kPa
- c. 102.3 kPa.
- **d.** 124.7 kPa

Use the figure to answer the following questions.

- **20.** What instrument is illustrated in the figure?
- 21. Who invented this instrument?
- 22. What are the two opposing forces that control the height of the mercury in the column?
- 23. What does it mean when the level of mercury rises in the column?

