Instructions: This is a work along tutorial. Attempt to solve each problem before looking at the solution. Record all your work and all steps involved in the problem solving on your notebook paper. Turn in your paper when you are finished.

Problem \#1: Dimensional Analysis Review

Sam has entered into a 10 mile race. Use ALL of the following conversions (ratios) to determine how many inches there are in the race. $5280 \mathrm{ft}=1 \mathrm{mile}$; $\mathbf{1 2}$ inches = $\mathbf{1 f t}$

Problem \#2: Grams to moles review

Determine how many moles there are in 5.17 grams of $\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$.

Problem \#3: Mole - Mole Conversions

When $\mathrm{N}_{2} \mathrm{O}_{5}$ is heated, it decomposes:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

a. How many moles of NO_{2} can be produced from 4.3 moles of $\mathrm{N}_{2} \mathrm{O}_{5}$?
b. How many moles of O_{2} can be produced from 4.3 moles of $\mathrm{N}_{2} \mathrm{O}_{5}$?

Problem \#4 gram \leftrightarrow mole and gram \leftrightarrow gram conversions

When $\mathrm{N}_{2} \mathrm{O}_{5}$ is heated, it decomposes:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

a. How many moles of $\mathrm{N}_{2} \mathrm{O}_{5}$ were used if 210 g of NO_{2} were produced?
b. How many grams of $\mathrm{N}_{2} \mathrm{O}_{5}$ are needed to produce 75.0 grams of O_{2} ?

Problem \#5: Gram to Gram Conversions

Aluminum is an active metal that when placed in hydrochloric acid produces hydrogen gas and aluminum chloride. How many grams of aluminum chloride can be produced when 3.45 grams of aluminum are reacted with an excess of hydrochloric acid?

$$
\mathrm{Al}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{AlCl}_{3}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Problem \# 6 Limiting/Excess/ Reactant and Theoretical Yield Problems :
Potassium superoxide, KO_{2}, is used in rebreathing gas masks to generate oxygen.

$$
4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{KOH}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

a. How many moles of O_{2} can be produced from $0.15 \mathrm{~mol} \mathrm{KO} \mathbf{O}_{2}$ and $0.10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$?
b. Determine the limiting reactant.

Problem \#7 Theoretical yield vs. Actual yield

> Suppose the theoretical yield for an experiment was calculated to be 19.5 grams, and the experiment was performed, but only $\mathbf{1 2 . 3}$ grams of product were recovered. Determine the \% yield.

$$
\% \text { yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100
$$

Problem \#8: Limiting/Excess Reactant Problem with \% Yield $4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathbf{4 K O H}(\mathrm{s})+\mathbf{3 O}_{\mathbf{2}}(\mathrm{g})$

If a reaction vessel contains 120.0 g of KO_{2} and 47.0 g of $\mathrm{H}_{2} \mathrm{O}$, how many grams of O_{2} can be produced?

Problem \#9: Honors Only! If only 35.2 g of O_{2} were recovered, what was the percent yield?

