Instructions: This is a work along tutorial. Attempt to solve each problem before looking at the solution. Record all your work and all steps involved in the problem solving on your notebook paper. Turn in your paper when you are finished.

Problem \#1: Dimensional Analysis Review

Sam has entered into a 10 mile race. Use ALL of the following conversions (ratios) to determine how many inches there are in the race. $5280 \mathrm{ft}=1$ mile; 12 inches $=1 \mathrm{ft}$

Units match

Problem \#2: Grams to moles review

Determine how many moles there are in 5.17 grams of $\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$.

Problem \#3: Mole - Mole Conversions

When $\mathrm{N}_{2} \mathrm{O}_{5}$ is heated, it decomposes:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

a. How many moles of NO_{2} can be produced from 4.3 moles of $\mathrm{N}_{2} \mathrm{O}_{5}$?

b. How many moles of O_{2} can be produced from 4.3 moles of $\mathrm{N}_{2} \mathrm{O}_{5}$?

Problem \#4 gram \leftrightarrow mole and gram \leftrightarrow gram conversions

When $\mathrm{N}_{2} \mathrm{O}_{5}$ is heated, it decomposes:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

a. How many moles of $\mathrm{N}_{2} \mathrm{O}_{5}$ were used if $21 \underline{\mathrm{~g}}$ of NO_{2} were produced?

b. How many grams of $\mathrm{N}_{2} \mathrm{O}_{5}$ are needed to produce 75.0 grams of O_{2} ?

$75.0 \mathrm{gQ}_{2}$	$\mathrm{~mol}_{2}$	$2 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{5}$	$108 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{5}$
	$32.0 \mathrm{~g} \mathrm{O}_{2}$	$1 \mathrm{~mol} \mathrm{O}_{2}$	$\frac{1 \pi \mathrm{~N} \mathrm{~N}_{2} \mathrm{O}_{5}}{}=506 \quad$ grams $\mathrm{N}_{2} \mathrm{O}_{5}$

Problem \#5: Gram to Gram Conversions

Aluminum is an active metal that when placed in hydrochloric acid produces hydrogen gas and aluminum chloride. How many grams of aluminum chloride can be produced when 3.45 grams of aluminum are reacted with an excess of hydrochloric acid?

$$
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

gram to gram conversions

Aluminum is an active metal that when placed in hydrochloric acid produces hydrogen gas and aluminum chloride. How many grams of aluminum chloride can be produced when 3.45 grams of aluminum are reacted with an excess of hydrochloric acid?

> Now use the molar mass to convert to grams.

Problem \# 6 Limiting/Excess/ Reactant and Theoretical Yield Problems :
Potassium superoxide, KO_{2}, is used in rebreathing gas masks to generate oxygen.

$$
4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{KOH}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

a. How many moles of O_{2} can be produced from $0.15 \mathrm{~mol} \mathrm{KO} \mathbf{O}_{2}$ and $0.10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$?
b. Determine the limiting reactant.

Limiting/Excess/ Reactant and Theoretical Yield Problems :
Potassium superoxide, KO_{2}, is used in rebreathing gas masks to generate oxygen.

$$
4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{KOH}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

a. How many moles of O_{2} can be produced from $0.15 \mathrm{~mol} \mathrm{KO}_{2}$ and $0.10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$?
b. Determine the limiting reactant.

$$
\begin{array}{ccr}
4 \mathrm{KO}_{2}(\mathrm{~s})+ & 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow & 4 \mathrm{KOH}(\mathrm{~s})+\underset{2}{3 \mathrm{O}_{2}(\mathrm{~g})} \\
0.15 \mathrm{~mol} & 0.10 \mathrm{~mol} & \text { ? moles }
\end{array}
$$

Two starting amounts?
Where do we start?

Hide
one

Limiting/Excess/ Reactant and Theoretical Yield Problems :

Potassium superoxide, KO_{2}, is used in rebreathing gas masks to generate oxygen.

$$
4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{KOH}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

a. How many moles of O_{2} can be produced from $0.15 \mathrm{~mol} \mathrm{KO}_{2}$ and $0.10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$?
b. Determine the limiting reactant.

$$
\begin{array}{r|r|}
4 \mathrm{KO}_{2}(\mathrm{~s}) & +2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \\
0.15 \mathrm{~mol} & \mathbf{H i d e}
\end{array}
$$

Based on:
KO_{2}

Limiting/Excess/ Reactant and Theoretical Yield Problems :

Potassium superoxide, KO_{2}, is used in rebreathing gas masks to generate oxygen.

$$
4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{KOH}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

a. How many moles of O_{2} can be produced from $0.15 \mathrm{~mol} \mathrm{KO}_{2}$ and $0.10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$?
b. Determine the limiting reactant.

$$
\begin{aligned}
& 4 \mathrm{KO}_{2}(\mathrm{~s})+\underset{2}{2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})} \rightarrow 4 \mathrm{KOH}(\mathrm{~s}) \\
& \text { Hide }+\underset{\mathbf{2}}{\mathbf{0 . 1 0} \mathrm{mol}} \\
& \mathbf{3 O}_{2}(\mathrm{~g}) \\
& ? \text { moles }
\end{aligned}
$$

Based on:
KO_{2}

$0.15 \mathrm{moHO}_{2}$	$\frac{3 \mathrm{~mol} \mathrm{O}_{2}}{4}=0.1125 \mathrm{~mol} \mathrm{O}$
	4 molKO
2	

| Based on: |
| :---: | :---: |
| $\mathrm{H}_{2} \mathrm{O}$ |\quad| $0.10 \mathrm{moH}_{2} \mathrm{O}$ | $\mathbf{3 m o l ~ O}_{2}$ |
| :--- | :--- |
| $2 \mathrm{molH}_{2} \mathrm{O}$ | |$=0.150 \mathrm{~mol} \mathrm{O} \mathbf{2}_{2}$

Limiting/Excess/ Reactant and Theoretical Yield Problems :

Potassium superoxide, KO_{2}, is used in rebreathing gas masks to generate oxygen.

$$
4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{KOH}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

a. How many moles of O_{2} can be produced from $0.15 \mathrm{~mol} \mathrm{KO} \mathbf{2}_{2}$ and $0.10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$?

Determine the limiting reactant.

$$
\begin{array}{ccr}
4 \mathrm{KO}_{2}(\mathrm{~s})+ & 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow & 4 \mathrm{KOH}(\mathrm{~s})+\underset{2}{ }{3 \mathrm{O}_{2}(\mathrm{~g})}^{0.15 \mathrm{~mol}} \quad \mathbf{0 . 1 0 \mathrm { mol }} \quad
\end{array}
$$

Problem \#7 Theoretical yield vs. Actual yield

Suppose the theoretical yield for an experiment was calculated to be 19.5 grams, and the experiment was performed, but only 12.3 grams of product were recovered. Determine the \% yield.

Theoretical yield $=19.5 \mathrm{~g}$ based on limiting reactant Actual yield $=12.3 \mathrm{~g}$ experimentally recovered

$$
\% \text { yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100
$$

$$
\% \text { yield }=\frac{12.3}{19.5} \times 100=63.1 \% \text { yield }
$$

Problem \#8: Limiting/Excess Reactant Problem with \% Yield $4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{KOH}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$

If a reaction vessel contains 120.0 g of KO_{2} and $47.0 \mathrm{~g} \mathrm{of} \mathrm{H}_{2} \mathrm{O}$, how many grams of O_{2} can be produced?

$$
\begin{aligned}
& 4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{KOH}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \\
& 120.0 \mathrm{~g} \quad \text { Hide one }
\end{aligned}
$$

Problem \#9: Limiting/Excess Reactant Problem with \% Yield

$$
4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{KOH}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

If a reaction vessel contains 120.0 g of KO_{2} and 47.0 g of $\mathrm{H}_{2} \mathrm{O}$, how many grams of O_{2} can be produced?

$$
\begin{aligned}
& 4 \mathrm{KO}_{2}(\mathrm{~s})+\mathbf{2 \mathrm { H } _ { 2 }} \mathbf{O}(\mathrm{l}) \rightarrow \mathbf{4 K O H}(\mathrm{s})+\mathbf{3 O}_{\mathbf{2}}(\mathrm{g}) \\
& \text { Hide } \\
& 47.0 \mathrm{~g} \\
& \text { ? g }
\end{aligned}
$$

Problem \#9: if only 35.2 g of O_{2} were recovered, what was the percent yield? HONORS ONLY!!!
$\frac{\text { actual }}{\text { theoretical }} \times 100=\frac{35.2}{40.51} \times 100=86.9 \%$ yield

If a reaction vessel contains 120.0 g of KO_{2} and 47.0 g of $\mathrm{H}_{2} \mathrm{O}$, how many grams of O_{2} can be produced?

$$
\begin{aligned}
& 4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{KOH}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \\
& 120.0 \mathrm{~g} \quad 47.0 \mathrm{~g} \\
& \text { ? g }
\end{aligned}
$$

Determine how many grams of Water were left over.
The Difference between the above amounts is directly RELATED to the XS $\mathrm{H}_{2} \mathrm{O}$.
125.3-40.51 $=84.79 \mathrm{~g}$ of O_{2} that could have been formed from the $\underline{X S}$ water.

$84.79 \mathrm{gQ}_{2}$	mol $_{2}$	$2{\text { mol } \mathrm{H}_{2} \mathrm{O}}$	$18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
	$32.0 \mathrm{~g} \mathrm{O}_{2}$	$3 \mathrm{~mol}_{2}$	$1 \mathrm{moH}_{2} \mathrm{O}$

