CHAPTER



## STUDY GUIDE FOR CONTENT MASTERY

# **Nuclear Chemistry**

### Section 25.1 Nuclear Radiation

In your textbook, read about the terms used to describe nuclear changes.

Use each of the terms below just once to complete the passage.

| alpha particle<br>beta particles | radioactivity<br>radiation  | gamma ray<br>X ray     | radioisotope<br>radioactive decay       |                                       |
|----------------------------------|-----------------------------|------------------------|-----------------------------------------|---------------------------------------|
| The discovery of                 | the <b>(1)</b>              | in 1895 t              | y Wilhelm Roentgen open                 | ed a                                  |
| whole new field of re            | search. Among those         | who worked in this     | new field were Pierre and               |                                       |
| Marie Curie. The Cur             | ries discovered that se     | ome forms of matter    | give off                                |                                       |
| (2)                              | , a combinatio              | n of particles and end | ergy. Marie Curie named th              | nis                                   |
| process (3)                      | Anot                        | her term used to desc  | cribe the process by which              | one                                   |
| element spontaneousl             | y changes into anoth        | er element is (4)      | Any                                     | •                                     |
| isotope that undergoe            | s such changes is cal       | led a(n) <b>(5)</b>    | ·                                       | · · · · · · · · · · · · · · · · · · · |
| There are three co               | ommon forms of radi         | ation. One type is a f | form of energy known as                 | •                                     |
| (6)                              | The other typ               | es of radiation consi  | st of particles. The form of            |                                       |
| radiation containing t           | he heavier particle is      | made up of helium r    | nuclei called                           | • •                                   |
| (7)                              | The form of a               | radiation containing t | he lighter particle consists            | of                                    |
| electrons called (8)_            |                             | <del>•</del>           |                                         |                                       |
| In your toythook yo              | , and a basses who a diamon |                        |                                         | ·                                     |
| In your textbook, rea            |                             | ery of radioactivity.  |                                         |                                       |
| Complete each state              |                             |                        | 1 · · · · · · · · · · · · · · · · · · · | i                                     |
|                                  | •                           |                        | s                                       | •                                     |
|                                  |                             |                        | ing power is the                        |                                       |
| 11. When a radioacti             | ve nucleus gives off        | a gamma ray, its aton  | nic number increases by _               |                                       |
| <b>12.</b> The three types of    | of radiation were first     | identified by          |                                         |                                       |
| <b>13.</b> Each alpha partic     | ele carries an electric     | charge of              | •                                       | · · · · · · · · · · · · · · · · · · · |
| 14. Each beta particl            | e carries an electric c     | harge of               | •                                       | . *                                   |
| <b>15</b> . Each gamma rav       | carries an electric ch      | arge of                |                                         |                                       |

## CHAPTER (2)

#### **STUDY GUIDE FOR CONTENT MASTERY**

## Section 25.2 Radioactive Decay

In your textbook, read about the changes that take place in an atomic nucleus when it decays.

Circle the letter of the choice that best completes the statement.

- 1. The number of stable isotopes that exist compared to the number of unstable isotopes is
  - a. much less.
- **b.** much more.
- c. slightly more.
- d. about the same.
- **2.** A lightweight isotope is likely to be stable if the ratio of protons to neutrons in its nucleus is
  - **a.** 1:2.

**b.** 1:1.

- c. 2:1.
- **d.** 5:1.

- 3. The only nucleon among the following is the
  - a. electron,
- b. positron.
- c. beta particle.
- d. neutron.
- 4. The isotope least likely to be found in the band of stability among the following is
  - a.  ${}^{13}_{6}$ C.
- **b.**  $^{17}_{8}$ O.
- c.  $^{32}_{13}$ Al.
- **d.**  $^{29}_{14}$ Si.
- **5.** The isotope formed by the beta decay of  $^{40}_{19}$ K has an atomic number of
  - **a.** 18.

- **b.** 39.
- **c.** 20.

- **d.** 21.
- **6.** The isotope formed by the alpha decay of  $^{238}_{92}$ U has a mass number of
  - **a.** 234.

**b.** 236.

**c.** 238.

- **d.** 240.
- 7. The positron produced during positron emission comes from a(n)
  - a. neutron.
- **b.** proton.
- c. electron.
- d. positron.
- 8. During electron capture, a proton in the nucleus of an atom is converted into a(n)
  - a. neutron.
- **b.** positron.
- c. electron.
- d. another proton.
- **9.** When the isotope  $^{238}_{91}$ Pa decays by beta emission, the isotope formed is
  - **a.**  $^{234}_{89}$  Ac.
- **b.**  $^{238}_{90}$ Th.
- **c.**  $^{237}_{92}$ U.
- **d.**  $^{238}_{92}$  U

- **10.** The isotope formed by the alpha decay of  $^{154}_{66}$ Dy is
  - **a.**  $^{150}_{66}$ Dy.
- **b.**  $^{150}_{67}$ Ho.
- **c.**  $^{150}_{64}$ Gd.
- **d.**  $^{154}_{67}$ Ho.

- 11. The neutron-to-proton ratio for the isotope sodium-23 is
  - **a.** 1:1.1.
- **b.** 1.1 : 1.
- **c.** 2.1 : 1.
- **d.** 1:2.1.

- **12.** The decay of  $^{162}_{69}$  Tm yields  $^{162}_{68}$ Er and
  - **a.**  ${}_{2}^{4}$  He.
- **b.**  $_{-1}^{0}$ e.
- **c.** γ

- **d.**  $_{+1}^{0}$
- **13.** Atoms located above the band of stability on a graph of numbers of neutrons versus number of protons are usually unstable because they contain too many
  - a. protons.
- **b.** neutrons.
- c. electrons.
- d. nucleons.